Non-expert summaryWhen a steady shear flow passes over a long (2-D) cavity it sets up a circulation cell in the cavity, where the flow in the cavity is contained within the cavity (with a boundary called the separatrix) and mass transport into and out of the cavity is predominantly by diffusion. This is particularly true at small scales. The authors investigate numerically and experimentally two methods for enhancing mass transport from these 'cells' - by geometrically modifying the boundary driving the flow, and making the driving flow time-dependent. Both modifications destabilize one of the wall attachment points of the separatrix, allowing fluid exchange between the cavity and channel.
The range of Reynolds and Reynolds-Strouhal numbers studied is 7.7 <= Re <= 46.5 and 0.52 <= ReSr <= 12,55 in the spatially dependent mode and 12 <= Re <= 93 and 0.26 <= ReSr <= 5.02 in the time-dependent mode. The transport is described theoretically via lobe dynamics, which characterizes the instability of the separatrix. They find that the resulting mass transfer between the cavity and the outer shear flow, through the distabilized separatrix is enhanced by several orders of magnitude compared to a diffusive mass transfer.